
Volume- 6 ISSN: 2362-0080

Issue- I Rajarata University Journal

June-2021 www.ruj.ac.lk/journals/

© RUJ 2021, All Rights Reserved Page 64

Category: Research Article

DevOps Engine Modeling for Microservices Software Applications on

Docker Containers

*1
Kithulwatta,WMCJT,

2
Wickramaarachchi Wiraj Udara,

3
Warnajith Nalin

*1
Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka

2
Department of Computing, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale, Sri
Lanka

 3
Software Engineering Teaching Unit, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka

ARTICLE DETAILS ABSTRACT

Article History
Published Online: 30 June, 2021

Existing DevOps infrastructures are: difficult to archive data, difficult

to archive large virtual machines, large payments for cloud services and

difficult to scale the infrastructure. By applying more convenient DevOps

practices, an agile DevOps engine was designed. The proposed DevOps

engine was deployed on the Docker container management platform and

used separate Docker containers to deploy software applications and

services to obtain the enterprise ready infrastructure by applying

microservices architecture. The engine was evaluated with the same

infrastructure in a cloud environment. According to the identified data

and experimental results of the research study, the engine was

performed fast execution speed. The host computer resources were

utilized for the proposed engine. As well, container resource sharing was

examined when shrinking and stretching containers. When transferring

data within containers, the engine was secured since data were shared

on directory paths. Furthermore, the engine performed more backup,

portable and easy migration features. Advanced software engineering

preliminaries and better Docker orchestration tools were applied for the

proposed solution. The study found out that fast and light-weighted

Docker containers help to ship the microservices software application in

the enterprise-ready environment by utilizing host computer resources

as the significance of the study. Cloud hosted Docker containers, three

different software applications and a database management system

container was used for the experiment. Accordingly, the study

investigated the launch of a stable DevOps engine with Docker.

Keywords
Container approach, DevOps
engineering, Distributed computing

*Corresponding Author

Email:chiranthajtk@gmail.com

1. Introduction

Software and the internet have changed the

culture of all kinds of industries such as

manufacturing, apparel, education, health,

government etc. into the digital world. Before more

years ago software and the internet were a very

small part of a business and were merely supported

to the industry. But, within the current industry

platforms, software and internet are an integrated

component of the businesses and it plays a major

role: for example, banking, bill payments, purchasing

and factory automations. The usage of software and

the internet makes an easy platform for companies

to interact with customers by providing a huge

amount of services. Other than that companies use

software to make more values for their day to day

operations like supply chain management, logistics,

communication and operation. Mainly manufacturing

and production companies are moving their design,

build, deliver and all other manufacturing stuff into

an automated way.

DevOps engineers play a massive role in the

Information Technology industry to deliver the

organizational software applications as a rapid

service to the end users and clients. To deliver the

final software applications, have to apply more tools,

best practices and more ideologies to keep the

standard of the delivery. DevOps engineers should

have to engage in enhancing the product in a fast

way rather than traditional software delivery and

management process. If the DevOps enables to

enhance the delivery process, it measures the

efficiency of the team by market and customers.

DevOps team needs to follow a set of practices and

tools to accomplish their tasks without any delay. In

the traditional way of DevOps, they can follow the

manual process for every deployment process. But,

http://www.ruj.ac.lk/journals/

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 65 Kithulwatta et al.

having a high velocity for the system application

delivery is an essential factor. By driving with more

speed, the process enables one to adapt to the

changing market in a better way and expand the

ideas efficiently with the business results. With the

usage of some practices in DevOps, the protocol

makes a quicker platform to enhance the updates of

software version releases.

To develop software products faster, increasing

the frequency and pace of releases are needed. By

increasing the bug fixing and new features adding to

the platform faster, it enables to meet customer

goals in a more advanced way and to meet the

competitive advantage. To give a positive

experience to the end-users, maintaining and

ensuring the application quality and system

infrastructure is needed. All changes in the system

must be functional and safe. Monitoring the system

performance in real time is required for DevOps

engineers and system administrators while changing

the infrastructure.

To launch most computer system infrastructures,

virtual machines were applied with the concept of

virtualization. Virtualization is an old concept. Figure

1 presents the architecture of the virtualization [14].

Figure 1: Virtualization architecture [14]

Hypervisor is the most important component for

virtualization. Hypervisor manages the infrastructure

to run multiple compute hosts as virtual machine

instances with a full operating system. Since each

virtual instance consists of the full package of the

operating system, the virtualization carries higher

overhead to the infrastructure.

The concept, “containerization” was introduced

to the computing discipline to bring an alternative for

virtualization. The containerization was designed to

bring a lightweight infrastructure. Figure 2 presents

the architecture for the containerization [14]. The

container engine is a main component of the

container architecture and on top of the container

engine, separate containers can be deployed. Each

container consists of full packages of dependencies,

binaries and libraries which are essentially needed

to run the software applications and services with

the container.

Figure 2: Container architecture [14]

Within the practitioner most container vendors

are available. Linux containers, Rkt and Docker are

some of them. Among all of them, Docker is the

most trending container classification.

Docker is providing a platform to automate the

application when they are deployed into containers

[21]. After making any deployment or any execution

on top of the Docker container, it makes an extra

layer of deployment on top of the engine. Before

deploying the source-code or application binaries

into the production environment, it can test with an

easy platform on Docker containers. Lots of

comparisons have been done with containers and

virtual machines by a lot of scholars. A container

consists of executable application/s. All fundamental

necessary software dependencies need to run a

container. Containers are using Linux kernel

mechanisms to allocate resources [26]. Engineers

can allocate resources for the containers like

network configurations, CPU and memory at the

time of container creation. The “Density” is the next

advantage of the Docker containers [11]. Docker is

not combined with hypervisor and Docker uses all

available resources of the host operating system. It

causes the containers to run on a single host, with

the virtual machines. Docker containers present

higher performance with higher density.

Currently below problems (Pi) were identified

within the domain of DevOps when using the

traditional DevOps practices.

P1= Difficulty of archiving large computer

systems infrastructure

P2= Difficulty to update, maintain, migrate and

scale the infrastructure

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 66 Kithulwatta et al.

P3= Difficulty of using hardware & software in an

efficient way

P4= High cost scaling

 Accordingly, the main objectives (OBi) of the

study are:

OB1 = To develop conceptual and technically

containerized DevOps engine in order to orchestrate

the containers architecture user friendly,

OB2 = To present long time data consistency

approach

OB3 = To create an agile DevOps platform in

order to make it easy to apply with DevOps

practices.

There were and there are a lot of discussions

made on online forums to create containerized

computer systems infrastructure platforms. Those

forums presented only the experience of the authors

without any theoretical proof.

2. Material and Methods

To overcome the identified problems and to

achieve the overall objectives of the research study,

an enterprise-ready DevOps engine was

established. The proposed DevOps engine (named

as Case 01) was established by using Docker

container management platform on top of a Linux

x86_64 Canonical Ubuntu 18.04.2 Long Term

Support (LTS) operating system. Docker version

19.03.9 was used for the experiment. Six separated

Docker containers were used to launch the

infrastructure. For the deployment purposes and for

the establishment of an enterprise-ready platform,

fully functional microservices applications were

used. Those applications were developed with most

widely used and using technologies in the current

day. Furthermore, the other selected software

application services were mostly popular

technologies in enterprise-environment.

By using software application reusability as a

software engineering preliminary, Docker trusted

images were used from the Docker Hub [8] [24].

(Docker Hub is the public repository for Docker

images and application templates). Three different

microservices software applications were used to

get the advantage of microservices software

architecture within this research study. The selected

software applications were developed by using three

different software technologies. Apache Tomcat web

server, NGNIX web server and Ubuntu: bionic (for

Springboot application container) containers were

used to deploy those three software applications. To

facilitate the database management system

services, MySQL database management system

containers were used. For the establishment of

continuous integration and continuous delivery

(CI/CD), Jenkins container was launched. To

support each software application build, one single

access point was created. Other than that, the

access point was for organizing all binary resources

including property libraries and remote artifacts. That

single access point is, in-house Jfrog Artifactory

container. Docker containers were used to provide

an isolated environment for the microservices

applications.

All Docker containers were mapped with “docker

volumes” to create a long time data persistance

approach. All key data and application path of each

container were mapped on the path of

/var/lib/docker/volume/ [24] on the host computer

infrastructure. Figure 3 presents the pictorial way of

architected DevOps engine.

All launched Docker containers are following

distributed computing architecture. To make the

communication among each container, Internet

Protocols (IPs) were defined. As well, the internal

Docker network was defined. The internal network

was with 172.17.0.0/16 as the subnet and

172.17.0.1 as the gateway. For the internal and

external data transactions, container ports and host

ports were mapped with each container. Table 1 has

presented the internal IP, container port and host

port mapping with each container.

Figure 3: Proposed DevOps engine on Docker

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 67 Kithulwatta et al.

Table 1: Container IP & port mapping with host
ports

Container
name

Internal
IP

Container
port

Host
Port

Artifactory
container

172.17.0.2 8081 9090

Jenkins
container

172.17.0.3 8080 9091

MySQL
container

172.17.0.4 3306 9092

Apache
Tomcat

container

172.17.0.5 8082 9093

Springboot
container

172.17.0.6 8080 9094

NGNIX
container

172.17.0.7 80 9095

To access each service from outside of the

platform, “host IP:host-port” port mapping was

needed to use. To access each service within the

Docker platform, “internal IP:container port” port

mapping was needed to use.

After establishing the stable Docker platform, all

Docker containers were archived as images inside

the local Docker registry and converted to .tar file

format within the host computer infrastructure. For

the monitoring and administrative purposes of the

Docker platform, portainer.io tool was used instead

of the traditional command line interface.

To evaluate the proposed Docker engine, the

same architecture was deployed in a virtual machine

on a cloud environment. The corresponding virtual

machine based infrastructure is named as Case 02.

Case 02 was also launched within an internal cloud

network.

For the Case 02, each virtual machine was with

2 virtual CPUs. 15GB memory allocation was for

each virtual machine and network bandwidth was

1Gbps. As well, for the proposed Docker engine, the

host computer sever configurations are the same for

above configurations of Case 02.

3. Results and Discussion

This research study was conducted to architect

an enterprise-ready DevOps engine and evaluate

the engine against traditional and existing common

infrastructures. By considering the host computer

resource usage & utilization, applied software

engineering preliminaries, data transferring

approach & network gap for the data transferring,

infrastructure backup & migration, Docker platform

monitoring were evaluated for the proposed engine.

Furthermore, to get essential decisions for the

DevOps platform, core measurements were

identified within this research study. [For the ease of

presentation results, the following abbreviations

were used for Docker containers namely CPU %

and MEM % (the percentage of the host’s CPU and

memory the container is using), MEM USAGE

/LIMIT (the total memory the container is using, and

the total amount of memory it is allowed to use),

NET I/O (the amount of data the container has sent

and received over its network interface), BLOCK I/O

(the amount of data the container has read to and

written from block devices on the host) and PIDs

(the number of processes or threads the container

has created)] [7].

3.1. Resource usage & utilization

To analyze the proposed system infrastructure,

the engine was experimented over the same

infrastructure on virtual machines on the cloud

service (Case 02). Restarting time was measured in

each container against the particular virtual

machine. Accordingly, the below table 2 presented

the data obtained by calculating the mean-restart

time of each container-virtual machine paradigm for

ten times. First column of table 2 presents the

container/cloud instance name. Last two columns

are presenting the mean restart time for each

container and cloud instances. Mean restart time

was measured in seconds (s).

Table 2: Restart time consuming for containers
and cloud virtual machines

Service
name

Time-consuming for restart

(s-seconds)

Container on
Docker

Cloud
insatnce

MySQL
service

3.25 17.26

Artifactory
service

3.45 21.21

Apache
Tomcat
servcie

4.26 23.14

NGNIX
service

3.15 15.37

Springboot
service

4.49 21.22

Jenkins
service

6.05 31.47

According to Table 2, the performance of mean-

restarting time was presented in a 1:5

(approximately) ratio between containers and virtual

machines in the cloud for each service. This depicts,

approximately 83% of performance increment is

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 68 Kithulwatta et al.

presented in containerized engine approach than

cloud instances.

According to container resource usage of the

host, below statistical data were calculated for the

Jenkins container. Table 3 depicts the data which

has been collected when the Jenkins container was

in normal up and running state. While executing 51

PIDs, the container consumed 13.86% mean

memory usage and 1.84% mean CPU from the host.

Table 3: Jenkins container resource usage

Container Name Container for Jenkins

Container ID b4d6ba6100c3

CPU % 1.84

Memory usage/ Limit 2.035GiB / 14.68GiB

MEM % 13.86

Net I/O 1.09GB / 2.28GB

Block I/O 4.71GB / 1.55GB

PIDs 51

When the Jenkins container makes a software

deployment, it performed 38.21% mean CPU usage

from the host. But sometimes CPU usage was more

than 100%. The proposed engine was launched on

a multi-core operating system and the host was

parallelized to all processes with many cores to get

the benefit of the containerized approach. Hence

most of the time, the Jenkins container consumed a

minimum number of host resources for the normal

execution. When the Jenkins container makes a

deployment, it was consumed high performance and

the container was scaled(stretched). Hence the

container used the maximum resource stream. After

the deployment, the container was shrunk and the

container became normal as mentioned in above

table 3.

Lot of literature had presented that isolated an

environment is most suitable for microservices

approach. Hence both two cases (Case 01 – the

proposed containerized engine & Case 02) were

launched to maintain the isolated environment.

Below table 4 has presented host computers’

resource measurements. To generate the

experimental results, the mean values for each

metrics were calculated by considering 30 days of

performance with a one-hour interval per day.

Particularly those metrics are CPU utilization

[Activity level from CPU. Expressed as a percentage

of total time (busy and idle) versus idle time.] and

memory utilization (Space currently in use.

Measured by pages. Expressed as a percentage of

used pages versus unused pages). In table 4, the

first column was used to denote the particular case

and the second column was to denote the name of

the cloud instance. CPU utilization and memory

utilization was calculated as a percentage.

According to the collected measurements for

both Case 01 & 02: Case 01 had utilized host

computer resources. According to the microservices

architectural software applications and services, all

applications and services were executed on top of

the host in Case 01. The Case 01 has provided an

isolated environment for each application by using

Docker containers. The Case 02 has given an

isolated environment for each by using different

cloud instances. Ultimately, the Case 02 has wasted

more computer resources. Hence the proposed

approach has proved that a containerized approach

is more suitable than Case 02 according to the

selected use case on behalf of resource utilization

for the research study.

Table 4: Host computer CPU & memory
utilization for both cases

Cases Cloud
Instance

Name

CPU
utilization

(%)

Memory
utilization

(%)

Case
(1)

Docker host
instance

47.862 51.468

Case
(2)

Instance for
NGNIX
service

0.137 3.488

 Instance for
springboot
service

0.353 4.261

 Instance for
Apache
Tomcat
service

0.484 5.972

 Instance for
MySQL
database

0.322 5.854

 Instance for
Jenkins

0.297 3.183

 Instance for
Artifactory
service

0.195 3.682

The figure 2 demonstrates the CPU utilization of

the host of Case 01 – proposed containerized

DevOps engine. Figure 3 shows the CPU utilization

for NGNIX host in Case 02 of only one host among

the six hosts as shown in table 4. It is difficult to

compare the overall performance of Case 01 and

Case 02 since in Case 02 consisted with six cloud

computer instances. Hence in this research study,

Case 01 & Case 02 were not compared over the

host resources. But resource utilization of Case 01

and resource wastage of Case 02 hosts were

presented in below graphs.

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 69 Kithulwatta et al.

Figure 4: CPU utilization for Case 01 host

Figure 5: CPU utilization for NGNIX host in Case 02

Within the DevOps platform, it is essential to use

the host computer hardware and software effectively

and efficiently. Within the enterprise platform, large

amounts of payments are made for the computer

resources. Therefore, usage of host computer

resources in an optimized way is needed.

3.2. Secured data transferring approach

In the proposed engine, all software artifacts

were transferred from the Jenkins data volume to

the application data volumes at each

build/deployment of the software. The artifacts

transferring happened inside the host computer

infrastructure. Linux cp command was used to

transfer the artifacts from one location to another

location on the local Docker registry. Since Linux

scp command was used in Case 02, the artifacts

were transferred between two hosts (For the Tomcat

service in both cases: embedded Tomcat container

was used inside the Jenkins service). Data

transmission happened only inside the host

computer infrastructure at the proposed DevOps

engine model. But in the cloud based instance

approach, data comes out from the host and the

data were transferred within the virtual cloud

network as cloud based instance approach was

made a time delay to transfer the data. In the Linux

scp command approach, logging credentials of the

hosts were needed to share within other hosts:

username & passwords and SSH keys. Therefore,

Figure 6: CPU utilization for NGNIX host in Case 02

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 70 Kithulwatta et al.

sharing those credentials between other hosts will

be a threat. It depicts the security of the proposed

engine is more than corresponding cloud based

virtual machine approach or local virtual machine

approach.

3.3. Network gap for data transferring

In both cases, each container and cloud

instances were connected to an internal network. As

discussed in immediate past sub section, all

software build artifacts were transferred from

Jenkins volumes to NGNIX, Apache Tomcat and

Springboot container. Below table 5 has shown

software artifacts deployment time for container and

cloud instance environment.

For the time calculation, mean deployment time

had been calculated in ten situations of software

artifacts build deployments. Fresh deployments had

not been considered since these happened only for

the initial deployments and any exceptional

situations.

According to the calculated mean deployment

time, commonly cloud instances made some latency

to make the deployment. For the Apache Tomcat

service perspective, the deployment time gap

between container platform and cloud instances

platform is very few. In Case 02 (cloud instances),

data transferring happened between separate hosts,

but in Case 01, data transferring was inside the host.

Therefore, the Case 02 had made some network

gap between hosts rather than containers in Case

01.

Table 5: Deployment time calculation for Case
01 & 02

Service Container Cloud
instance

NGNIX service 45 s 62 s

Springboot
service

57 s 67 s

Apache Tomcat

service
128 s 131 s

Fast iterations and continuous delivery are most

the important criteria for the success of DevOps'.

This is essentially to measure the time it takes to

distribute the software and how often it is deployed.

By tracking how often new code is deployed, the

team and customer can track the development

process. “Zero down time” is a most crucial task to

maintain in the DevOps platforms to keep the

software application availability continually. Even

5(five) seconds delay is also being affected on the

customer satisfaction. Therefore, omitting or

mitigating the system down time was more essential

and the proposed engine presented minimal system

down time at each software version deployments.

3.4. Infrastructure backup and migration

For a well-established infrastructure backup

procedure, all Docker containers were archived as

Docker images after making a stable Docker based

infrastructure in the proposed engine. Archived

Docker images were saved inside the local Docker

registry. To take out the images from the local

Docker registry, all images were converted to .tar

format. The converted .tar formatted images were

able to migrate from the host operating system to

another host. As well those images are portable.

Hence the proposed DevOps engine had provided

better and advanced backup options. As well the

proposed engine showed an easy migration

capability.

Within Case 02, the infrastructure was

established according to the traditional approach.

Block volumes were attached to each cloud instance

to archive key data of them. As well as boot volumes

were attached for the booting purposes. To keep

archived data in each block volume, payments were

needed to be made for cloud service providers.

Therefore, in Case 02 approach was made more

budget consuming. But in the proposed

engine(Case01) made free of charge to archive data

in Docker volumes, but the approach was required

to pay only for the block volumes of the host

computer. Hence the proposed engine was

performed with a less budget consuming approach.

As it affects enhances the business profitability and

reduction of unwanted payments is essential. Hence

keeping Docker images is most suitable for an

enterprise environment.

3.5. Application of Software Engineering

preliminaries

To launch Docker containers, Docker trusted

images were used from both the local Docker

registry and open Docker community called Docker

Hub. They are already configured with all packages

which are needed to launch the container without

installing manually. Since the software reusability is

one of major preliminaries of the software evolution

in the software engineering domain, particular

containers were launched immediately as an easy

platform to the DevOps activities. With the

engagement of the reusability components in the

proposed DevOps engine, the infrastructure

designing and development were with both with

reuse and for reuse (to launch the infrastructure,

with reuse was applied and after launching the

infrastructure by creating Docker images, for reuse

was applied). The mounted data volumes were used

to attach for several containers and therefore data

reuse was applied. After migrating the platform, the

new platform could implement the same

configuration in the new platform. Hence

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 71 Kithulwatta et al.

architectural reuse and design reuse was applied.

After migrating the DevOps engine, any containers

did not lose any executable code or application

binaries. Therefore, program reuse was applied to

the proposed DevOps engine [24].

3.6. Docker platform monitoring and

administering

To monitor and administrate the Docker

container platform, portainer.io tool was used.

Excepting initial Docker configurations, all Docker

activities can perform by using portainer.io tool:

container creation, Docker network management,

volume management, image creation, Docker

container performance graphically monitoring, and

etc. Portainer.io is a container based service,

providing a better graphical user interface. To

perform the internal functions of Docker containers,

an embedded command line interface was provided

in the portainer.io tool.

The table 6 was created using basic executing

statistics of the portainer.io container. Portainer.io

container executed 11 PIDs in the container. But the

container consumed 0.14% mean CPU performance

from the host computer CPU. As well as it

consumed 0.1% mean memory performance from

the host out of the total amount of the memory it is

allowed to use. Hence, portainer.io totally consumed

very low performance from the host. Since

portainer.io container does not bring higher workload

to the host. Therefore, portainer.io is a better tool to

manage and administrate the Docker environment.

Table 6: Portainer.io container resource usage

Container Name Container for
Portainer.io

Container ID a93c20a25dbb

CPU % 0.14

Memory usage/ Limit 15.23MiB / 14.68GiB

MEM % 0.1

Net I/O 22.8MB / 175MB

Block I/O 17.74 MB / 2.44GB

PIDs 11

Decision making is the most crucial task in the

DevOps industry. To create an enterprise-ready

platform, DevOps engineers have to look at more

considerations. Those considerations are cost

optimization for the platform, security of the platform,

network gap of the distributed components,

hardware & software effective usage, hardware &

software usage efficiency. The main recognition is

that the decision of the DevOps is dependent on the

use case. The characteristics of the use case are

technologies, tools, source code optimization, end-

user requirements and client requirements. It depicts

above proved results may be changed for another

use case.

4. Conclusion

In this research study, an enterprise-ready

system infrastructure was launched on top of the

Docker container management service by using

software applications and services which are

commonly used in the enterprise-ready environment.

The portainer.io was a better orchestration solution

with a user-friendly, web-based interface for Docker

containers to govern the Docker platform than the

command-line interface. Therefore, portianer.io tool

was recommended for better Docker management.

After creating a stable Docker containerized DevOps

engine, the author recommends to archive the

containers as Docker images and .tar format. Those

archived .tar formatted file can be used to extend

the backup process of the engine and migrate the

engine from one host platform to another platform

(to any operating system platform). It recommends

mounting a Docker volume before launching a

Docker container, to archive key data, logs and

applications on the host. For the long-time data

persistence of the engine, one or more Docker

volume attaching is recommended. It helps the

Docker volumes to recover the most important data

of the container although the container was crashed

or destroyed.

According to the observed experimental test bed,

the proposed containerized DevOps engine was

proved theoretically and practically. Therefore, OB1

objective was achieved within the study. The

proposed engine was performed with advanced and

higher approaches to archive data. Since it was with

more data persistence protocol and it proves the

OB2. Since the platform was used most of DevOps

and software engineering practices and

preliminaries. Therefore, that was answered for the

OB3.

References

1. Al-Dhuraibi Y, Paraiso F, Djarallah N, Merle P.

Autonomic Vertical Elasticity of Docker

Containers with ELASTICDOCKER. IEEE 10
th

International Conference on Cloud Computing.

pp 472-479. Available from:

https://doi.org/10.1109/CLOUD.2017.67

2. Apache Tomcat – Welcome! [Internet]. Available

from: http://tomcat.apache.org/ [Accessed 26
th

February 2021]

3. Artifactory – Universal Artifact Repository

Manager JFrog [Internet]. Available from:

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 72 Kithulwatta et al.

https://jfrog.com/artifactory/ [Accessed 26
th

February 2021]

4. Casalicchio E, Perciballi V. Measuring Docker

Performance: What a mess!!!*. Proceedings of

the 8
th
 ACM/SPEC on International Conference

on Performance Engineering Companion. pp 11-

16. Available from:

https://doi.org/10.1145/3053600.3053605

5. Chung MT, Quang-Hung N, Nguyen M, Thoai N.

Using Docker in high performance computing

applications. IEEE Sixth International

Conference on Communications and Electronics

(ICCE), 2016, pp.52-57, Available from:

https://doi.org/10.1109/CCE.2016.7562612

6. Cito J, Gall HC. Using Docker containers to

improve reproducibility in software engineering

research. IEEE/ACM 38
th
 International

Conference on Software Engineering

Comparison 2016. pp 906-907

7. docker stats [Internet]. Available from:

https://docs.docker.com/engine/reference/comm

andline/stats/ [Accessed 25
th
 February 2021]

8. Docker Hub [Internet]. Available from:

https://hub.docker.com/ [Accessed 24
th

February

2021]

9. Jaramillo D, Nguyen CV, Smart R. Leveraging

microservices architecture by using Docker

technology. Southeast Con 2016. pp 1-5,

Available from:

https://doi.org/10.1109/SECON.2016.7506647

10. Jenkins [Internet]. Available from:

https://www.jenkins.io/ [Accessed 26
th
 February

2021] To face the upcoming challenges

successfully in the DevOps environment, these

microservices architectural solutions with Docker

containers are adding more advantage to the

DevOps industry with faster software delivery for

the production.

11. Joy AM. Performance comparison between

Linux containers and virtual machines. 2015

International Conference on Advances in

Computer Engineering and Applications.

Available from:

https://doi.org/10.1109/ICACEA.2015.7164727

12. Kaewkasi C, Chuenmuneewong K. Improvement

of container scheduling for Docker using Ant

Colony Optimization. 9
th
 International

Conference on Knowledge and Smart

Technology 2017. pp 254-259. Available from:

https://doi.org/10.1109/KST.2017.7886112

13. Liu D, Zhao L. The research and implementation

of cloud computing platform based on docker.

11
th
 IEEE International Computer Conference on

Wavelet Actiev Media Technology and

Information Processing, 2014. pp475-478.

Available from:

https://doi.org/10.1109/ICCWAMTIP.2014.70734

53

14. Martin JP, Kandasamy A, Chandrasekaran K.

Exploring the support for high performance

applications in the container runtime

environment. Human-centric Computing and

Information Sciences 2018. Available from:

https://doi.org/10.1186/s13673-017-0124-3

15. MySQL [Internet]. Available from:

https://www.mysql.com/ [Accessed 26
th
 February

2021]

16. NGINX | High Performance Load balancer, Web

Server, & Reverse Proxy [Internet]. Available

from: https://www.ngnix.com/ [Accessed 26
th

February 2021]

17. Portainer | Open Source Container Management

GUI for Kubernetes, Docker, Swam [Internet].

Available from: https://www.portainer.io/

[Accessed 26
th
 February 2021]

18. Preeth EN, Mulerickal FJP, Paul B, Sastri Y.

Evaluation of Docker containers based on

hardware utilization. International Conference on

Control Communication & Computing India 2015.

Pp 697-700, Available from:

https://doi.org/10.1109/ICCC.2015.7432984

19. Rad BB, Bhatti HJ, Ahmadi M. An Introduction to

Docker and Analysis of its Performance.

International Journal of Computer Science and

Network Security. VOL. 17 No.3, March 2017

20. Ruan B, Huang H, Wu S, Jin H. A performance

Study of Containers in Cloud Environment.

Advances in Services Computing. APSCC 216.

Lecture Notes in Computer Science, vol 10065.

Available from: https://doi.org/10.1007/978-3-

319-49178-3_27

21. Russell B. KVM and docker LXC Benchmarking

with OpenStack [Internet]. Available from:

https://www.slideshare.net/BodenRussell/kvm-

and-docker-lxc-benchmarking-with-openstack

[Accessed 25th February 2021]

22. Tripathy P, Naik K. Software Evolution and

Maintenance: A Practitioner’s Approach.

Published by John Wiley & Sons, Inc.,

Hoboken, New Jersy

23. Stubbs J, Moreira W, Dooley R. Distributed

systems of microservices using Docker and

Serfnode. Proceedings of the 7
th
 International

Workshop on Science gateways 2015. pp 34-39.

Available from:

https://doi.org/10.1109/IWSG.2015.16

https://doi.org/10.1145/3053600.3053605
https://doi.org/10.1109/SECON.2016.7506647

DevOps engine modeling with Docker containerization

Volume-6, Issue I, June-2021 Rajarata University Journal

© RUJ 2020, All Rights Reserved Page 73 Kithulwatta et al.

24. Tripathy P, Naik K. Software Evolution and

Maintenance: A Practitioner’s Approach.

Published by John Wiley & Sons, Inc.,

Hoboken, New Jersy

25. Use volumes [Internet]. Available from:

https://docs.docker.com/storage/volumes/

[Accessed 25
th
 February 2021]

26. Zhang Q, Liu L, Pu C, Dou Q, Wu L, et al. A

Comparative Study of containers and Virtual

machines in Big Data. 2018 IEEE 11
th

International Conferences on Cloud Computing.

Available from:

https://doi.org/10.1109/CLOUD.2018.00030

27. Zheng C, Thain D. Integrating containers into

workflows: A case study using makeflow, work

queue and Docker. Proceedings of the 8
th

International Workshop on Virtualization

Technologies in Distributed Computing 2015. pp

31-38. Available from:

https://doi.org/10.1145/2755979.2755984

